Low temperature characterization of bituminous binders

“How relevant are binder test methods for prediction?”

Yvong HUNG,
B. Eckmann, G. Gauthier, S. Largeaud, L. Lapalu
How to easily identify durable materials for long-lasting pavement?

Field experiment...

- Time and labour cost-effective
- Reliable test methods to predict binder performances in road pavement

... Laboratory experiment

Asphalt mixture & binder test method

- Effective binder performances” ranking
- Realistic ageing impact on binder
- Distinguish long lifespan binder VS insidious ones
- Huge investigation and large period of time
- Materials quantities
- Available experiments field
Description of test methods

Thermal Stress Restrained Specimen Test (as control test method)
Cooling rate: 10°C/h

Fraass breaking point
Cooling rate: 1°C/min

Asphalt Binder Cracking Device
Cooling rate: 10°C/h

Bending Beam Rheometer
Objectives: Assess several binder test methods (Fraass, ABCD, BBR) on their ability to predict low temperature failure behavior as measured through TSRST (control test method).

Investigation program:

<table>
<thead>
<tr>
<th>Bitumen</th>
<th>Crosslinked PmB</th>
<th>Physical Blend PmB</th>
<th>TSRST</th>
<th>Fraass-O</th>
<th>ABCD-O</th>
<th>BBR-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/30 A</td>
<td>0</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35/50 A</td>
<td>0</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td>3,5</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35/50 B</td>
<td>0</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>35/50 C</td>
<td>0</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>50/70 A</td>
<td>0</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td>3,5</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AC 10 surf</th>
<th>Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/10 Quartzite</td>
<td>33</td>
</tr>
<tr>
<td>4/6 Quartzite</td>
<td>11,3</td>
</tr>
<tr>
<td>0/4 Quartzite</td>
<td>46,2</td>
</tr>
<tr>
<td>Filler</td>
<td>3,8</td>
</tr>
<tr>
<td>Binder</td>
<td>5,7</td>
</tr>
<tr>
<td>Voids</td>
<td>5 - 8</td>
</tr>
</tbody>
</table>
TRSRT test results

- Generally enhancement due to polymer modification
 - Optimum performance at 3.5% modification
 - Investigated physical blends no better than the unmodified bitumen
- Impact of bitumen sources variability decreased by polymer modification
Unmodified bitumen: prediction trends from binder tests

Fraass is more severe and poor predictive tool; ABCD is more optimistic.

BBR appears to be relevant

- rheologically « simple behavior »
- relationship between stiffness and failure
Polymer modified Bitumen: prediction trends from Fraass binder test

There is no universal correlation between Fraass and TSRST failure temperatures.

Fraass is still more severe…
Polymer modified Bitumen: prediction trends from ABCD binder test

ABCD is still slightly optimistic…

ABCD predicts optimistically polymer modification on TSRST performance…

… Correlations could possibly be established on the basis of « product families »

ABCD is over-sensitive in case of physical blend
Polymer modified Bitumen: prediction trends from BBR binder test

Impact of polymer content

Monotonous decrease of $T_{S=300\,\text{MPa}}$ with increasing polymer content

No significant changes for $T_{m=0.3}$

But existence of an optimum performance at 3.5% polymer content for TSRST
Polymer modified Bitumen: prediction trends from BBR binder test

Polymer modification at 3.5% enhances more dramatically TSRST than BBR

Polymer modification at 5% is similar to unmodified bitumen trends

BBR stiffness may be correlated to TSRST performance…

… but only on a « case per case » basis (families of products)
Conclusion and prospect

In comparison to TSRST . . .

- Fraass test appears as non relevant, very likely due to operating conditions (cooling rate, fatigue cracking contribution, etc...) which are too severe.

- ABCD, which mimics TSRST, is however more optimistic and is not related to TSRST in a unique way (e.g.: it is over-sensitive in the case of physical blends).

- BBR, not being a failure test, may only predict TSRST performance through correlations. Those are however not universal and have to be established per « families or products » (e.g. pure bitumen, PmB at a given polymer content,)

- Wider investigation on sensitivity to ageing of test methods in additional paper (#413)
Acknowledgements

With contribution from:

G. Dulac,
R. Colliat,
C. Ruot,
A. Brunon,
O. Moglia

S. Faucon-Dumont
V. Darraillan,
F. Robin,
P. Diez,
G. Hurbin

M. Farrar,
J-P Planche